NTNU Norwegian University of Science and Technology> Faculty of Information Technology, Mathematics and Electrical Engineering> Department of Mathematical Sciences.

Home Project in Advanced Real Analysis

A Proof of the Tietze Extension Theorem

by

Jan Wigestrand

English version 1.00

Trondheim, April 29, 2008.

The Tietze Extension Theorem.

Let *X* be a normal space. If *A* is a closed subset of *X* and $f \in C(A, [a, b])$, there exists $F \in C(X, [a, b])$ such that F|A = f.

See [Folland,p122].

Proof. Since *f* is continuous on a closed interval [a, b] we can without loss of generality replace [a, b] by [0, 1] (replace *f* by (f - a)/(b - a), $f = 0 \leftrightarrow f = a$, $f = 1 \leftrightarrow f = b$).

We will show that we can find F by using a sequence of continuous functions. By Urysohn's lemma there exists continuous functions

 $g_n \in C\left(X, \left[0, \frac{2^{n-1}}{3^n}\right]\right)$ where $g_n(B_n) = 0$, $g_n(C_n) = \frac{2^{n-1}}{3^n}$, $B_n \cap C_n = \emptyset$ and B_n , C_n are closed subsets of A.

Choose $B_1, \ldots, B_n, C_1, \ldots, C_n$ in the following way $B_1 = \{x \in A \mid f \leq \frac{1}{3}\},\$

 $C_1 = \left\{ x \in A \mid f \ge \frac{2}{3} \right\}, B_n = \left\{ x \in A \mid f - \sum_{j=1}^{n-1} g_j \le \frac{2^{n-1}}{3^n} \right\}, C_n = \left\{ x \in A \mid f - \sum_{j=1}^{n-1} g_j \ge \left(\frac{2}{3}\right)^n \right\}.$

The sets are closed subsets of *A*. Since *A* itself is closed the sets are closed in *X*. We also have $B_n \cap C_n = \emptyset$. Let $F = \sum_{n=1}^{\infty} g_n$. We have uniform convergence since per definition $g_n \leq \frac{2^{n-1}}{3^n}$. By proposition 4.13, see [Folland,p121], *F* is continuous.

Since $0 \le f - F \le \left(\frac{2}{3}\right)^n$ for all *n*, it follows that F = f on *A*.

References

Folland Gerald B., Real Analysis: Modern Techniques and Their Applications, 2nd ed., Wiley-Interscience, 1999.

Wigestrand Jan, A Proof of the Tietze Extension Theorem, Home Project in Advanced Real Analysis, MA3105, NTNU, Trondheim, March 16, 2006, (in Norwegian). http://www.janwigestrand.com/d/wigestrand_jan_tietze_MA3105.pdf

PROSJEKTOPPGAVE VÅREN 2006 MA 3105

JAN WIGESTRAND Studentnr:

16.03.2006

Tietze utiridober sats. La Xivere et normal rom.
His A er en luktet delmengde av X og
$$f \in C(A, [a, b])$$

så abieter dota $F \in C(X, [a, b])$ slik at $F/A = f$
Beirs: Ved å extette $f med (f-a)/(r-a)$, pan vi siden
fer katinuerig på et luktet internall atta uten tap av
generalitet, at $[a, b] = [0, 1]$ $(f = 0 \Rightarrow f = a, f = 1 \Rightarrow f = b)$
Vid vise at vi kan finne en F ved hjelp av en filge av
fontinuerige funkjoner.
I filge Unyschn's lemma så etbisterer det kontinuerige
funkjoner på formen
 $g_n \in C(X, [0, 2^{n-1}])$ der $g_n(B_n) = O_1 g_n(n) = \frac{2^{n-1}}{3^n}$
 $B_n \cap C_n = \emptyset$ og $B_n \cap C_n$ er luktete delmengder av A .
Velger mandene $B_1 \cdots B_{n-1} C_{11} \cdots O_n$ på filgende måte
 $B_1 = \{x \in H \mid f - \frac{1}{2^n} g_1 \leq \frac{2^{n-1}}{3^n}\} \subset_n = \{x \in H \mid f - \frac{5^n}{2^n} g_1 \geq (\frac{3}{3})^n\}$
Mangdene er luktet delmengder ov fl. Siden A netv er luktet
La $F = \frac{2}{3}g_1$. Siden per defining $\eta_n \leq \frac{3^{n-1}}{3^n}$, har vi uniform
I filge prop 4.13(Folland) nå er Fontinuerig.
Siden $0 \leq f - F \leq (2^n)^n + n$, filger det at $F = f$ på A.

$$\frac{\operatorname{Tretze} \operatorname{utridubus, mats} (\operatorname{obslit} \operatorname{pompakt} \operatorname{uenjon}_{-} \\ \operatorname{Anta} at X er LCH rom of RCX er pompakt Hvis $f \in C(K)$,
Is eksisterer det en $F \in C(X)$ Nikat $F/K = f$
Vider, Fpan velges til å forvinne utenfor en pompakt mengde.
Bevis: Ved å utette find $(1-a)/(b-a)$, pan vi viden for
potinuerly po at ukket intenall ato juten top av gelendet, at
 $[a,b] = [e_{1}] (f = 0 \Rightarrow f = a_{1}f = 1 \Rightarrow f = b)$
Vil vise at vi kan finne en F ved hjelp av en folge av kontinuerlige
La U vare en åren nonger menget tillukning slik at KCU. Furtimer.
La U vare en åren nongelt med kompakt tillukning slik at KCU. Furtimer.
I folge U nyrotin's tennan 'na elsisterer det kontinuerlige funksjoner
I folge U nyrotin's tennan 'na elsisterer det kontinuerlige funksjoner
I folge U nyrotin's tennan 'na elsisterer det kontinuerlige funksjoner
I folge U nyrotin's tenna 'na elsisterer det kontinuerlige funksjoner
I folge U nyrotin's tennan 'na elsisterer det kontinuerlige funksjoner
I folge U nyrotin's tennan 'na elsisterer det kontinuerlige funksjoner
I folge U nyrotin's tennan 'na elsisterer det kontinuerlige funksjoner
I folge U nyrotin's tennan 'na elsisterer det kontinuerlige funksjoner
I folge U nyrotin's tennan 'na elsisterer det kontinuerlige funksjoner
I folge U nyrotin's tennan 'na elsisterer det kontinuerlige funksjoner
I folge U nyrotin's tennan 'na elsisterer det kontinuerlige funksjoner
I folge fong Bni Cn er pompakte delmongder av K.
Velger mongdere B, ..., Bn, C, ..., Cn på folgende mite
B = {Xek | f = {Yen i B = a^{n-1} } Cn = {Xek | f - {Yen i B = a^{n-1} } her vi uniform
konvergens.
I folge fong H. IS (Followd) så er F kontinuerlig.
Siden $0 \leq f - F \leq (a/3)^n Hni forger det at F = f på K.
Support of F liger i U, og F Pan derned velges til å forminne
itenfor en kompakt mangde.$$$